نشر مجموعة من الباحثين في جامعات أمريكية وسويسرية بالتعاون مع شركة جوجل – وشركتها الفرعية DeepMind – ورقة بحثية توضح كيف يمكن أن تتسرب البيانات من منصات إنشاء الصور التي تستند في عملها إلى نماذج الذكاء الاصطناعي التوليدي مثل: DALL-E أو Imagen أو Stable Diffusion.
إذ تعمل هذه المنصات جميعها بالطريقة نفسها التي تعتمد على جانب المستخدم الذي يكتب مطالبة نصية محددة – على سبيل المثال: “كرسي بذراعين على شكل ثمرة أفوكادو” – ويحصل على صورة مولدة من النص خلال ثوانٍ.
وقد دُربت نماذج الذكاء الاصطناعي التوليدي المستخدمة في هذه المنصات على عدد كبير جدًا من الصور التي تحمل وصفًا محددًا سابقًا، وتكمن فكرة الشبكات العصبية في قدرتها على إنشاء صور جديدة وفريدة بعد معالجة كمية هائلة من بيانات التدريب.
ومع ذلك، تظهر الدراسة الجديدة أن هذه الصور ليست دائمًا فريدة. وفي بعض الحالات، يمكن أن تقوم الشبكة العصبية بإعادة إنتاج صورة مطابقة تمامًا لصورة سابقة اُستخدمت في التدريب، وهذا يعني أن الشبكات العصبية قد تكشف عن المعلومات الخاصة دون قصد.
وتتحدى هذه الدراسة وجهات النظر القائلة إن نماذج الذكاء الاصطناعي المستخدمة في توليد الصور لا تحفظ بيانات التدريب الخاصة بها، وأن بيانات التدريب قد تظل خاصة إذا لم يُكشف عنها.
تقديم المزيد من البيانات:
يمكن أن تكون نتائج أنظمة التعلم العميق مدهشة بالنسبة لغير المتخصصين، ويمكن أن يظنوا أنها سحرية، ولكن في الواقع، ليس هناك أي سحر في الأمر، فجميع الشبكات العصبية تستند في عملها إلى المبدأ نفسه، وهو التدريب باستخدام مجموعة كبيرة من البيانات، وتوصيفات دقيقة لكل صورة، على سبيل المثال: سلاسل من صور القطط والكلاب.
وبعد التدريب؛ تعرض الشبكة العصبية صورة جديدة ويُطلب منها تحديد هل هي لقطة أم كلب؟ ومن هذه النقطة المتواضعة، ينتقل مُطوّرو هذه النماذج إلى سيناريوهات أكثر تعقيدًا: يقومون بإنشاء صورة لحيوان أليف غير موجود بالفعل باستخدام الخوارزمية التي دُربت على العديد من صور القطط. وتُجرى هذه التجارب ليس فقط باستخدام الصور، ولكن أيضًا النصوص ومقاطع الفيديو وحتى الصوت.
نقطة البداية لجميع الشبكات العصبية هي مجموعة بيانات التدريب، إذ لا تستطيع الشبكات العصبية إنشاء كائنات جديدة من العدم. على سبيل المثال، لإنشاء صورة لقطة، يجب على الخوارزمية دراسة آلاف الصور الفوتوغرافية أو الرسومات الحقيقية للقطط.
جهود كبيرة للحفاظ على سرية مجموعات البيانات:
يُولي الباحثون في ورقتهم البحثية اهتمامًا خاصًا لنماذج التعلم الآلي ويعملون على النحو التالي: تشويه بيانات التدريب – وهي صور الأشخاص والسيارات والمنازل وما إلى ذلك – عن طريق إضافة تشويش. وبعد ذلك، تُدرب الشبكة العصبية على استعادة هذه الصور إلى حالتها الأصلية.
وتتيح هذه الطريقة إمكانية إنشاء صور ذات جودة مقبولة، لكن العيب المحتمل – بالمقارنة مع الخوارزميات في الشبكات التنافسية التوليدية، على سبيل المثال – هو ميلها الأكبر لتسريب البيانات. إذ يمكن استخراج البيانات الأصلية منها بثلاث طرق مختلفة على الأقل، وهي:
- استخدام استعلامات محددة لإجبار الشبكة العصبية على إخراج صورة مصدر محدد، وليس شيئًا فريدًا تم إنشاؤه بناءً على آلاف الصور.
- يمكن إعادة بناء الصورة الأصلية حتى لو توفر جزء منها فقط.
- من الممكن ببساطة تحديد إذا كانت صورة معينة مُضمنة في بيانات التدريب أم لا.
في كثير من الأحيان، تكون الشبكات العصبية كسولة، وبدلاً من إنتاج صورة جديدة، فإنها تنتج شيئًا من مجموعة التدريب إذا كان يحتوي على عدة نسخ مكررة من الصورة نفسها. إذا تكررت صورة في مجموعة التدريب أكثر من مائة مرة، فهناك فرصة كبيرة جدًا لتسريبها في شكلها شبه الأصلي.
ومع ذلك، أظهر الباحثون طرقًا لاسترداد صور التدريب التي ظهرت مرة واحدة فقط في المجموعة الأصلية، فمن بين 500 صورة اختبارها الباحثون، أعادت الخوارزمية بشكل عشوائي إنشاء ثلاثة منها.
مَن سرق من؟
في يناير 2023، رفع ثلاثة فنانين دعوى قضائية ضد منصات توليد الصور التي تستند في عملها إلى الذكاء الاصطناعي بسبب استخدام صورهم الموجودة عبر الإنترنت لتدريب نماذجها دون أي احترام لحقوق التأليف والنشر.
وتستطيع الشبكة العصبية بالفعل نسخ أسلوب فنان معين، وبالتالي تحرمه من الدخل. وتشير الورقة البحثية إلى أنه في بعض الحالات، تستطيع الخوارزميات، لأسباب مختلفة، التورط في الانتحال الصريح، وتوليد رسومات وصور فوتوغرافية وصور أخرى تكاد تكون متطابقة مع أعمال الأشخاص الحقيقيين.
لذلك قدم الباحثون توصيات لتعزيز خصوصية مجموعة التدريب الأصلية:
- التخلص من التكرارات في مجموعات التدريب.
- إعادة معالجة صور التدريب، على سبيل المثال: عن طريق إضافة تشويش أو تغيير السطوع؛ ويجعل هذا تسريب البيانات أقل احتمالًا.
- اختبار الخوارزمية باستخدام صور تدريبية خاصة، ثم تأكد أنها لا تعيد إنتاجها بدقة دون قصد.
ما التالي؟
من المؤكد أن منصات الفن التوليدي أثارت نقاشًا مثيرًا للاهتمام خلال الفترة الأخيرة، نقاش يجب فيه البحث عن توازن بين الفنانين ومطوري التكنولوجيا. فمن ناحية، يجب احترام حقوق التأليف والنشر، ومن ناحية أخرى، هل الفن المولد عبر الذكاء الاصطناعي مختلف جدًا عن فن الإنسان؟
لكن دعونا نتحدث عن الأمان. تقدم الورقة البحثية مجموعة محددة من الحقائق عن نموذج واحد فقط للتعلم الآلي. وبتوسيع المفهوم ليشمل جميع الخوارزميات المتشابهة، نصل إلى موقف مثير للاهتمام. فليس من الصعب تخيل سيناريو يُسلّم فيه مساعد ذكي لمشغل شبكة هاتف محمول معلومات الشركة الحساسة استجابة لاستعلام المستخدم، أو كتابة مطالبة نصية خادعة لشبكة عصبية عامة لإنشاء نسخة من جواز سفر شخص ما. ومع ذلك يؤكد الباحثون أن مثل هذه المشكلات لا تزال نظرية في الوقت الحاضر.
لكن هناك مشاكل أخرى حقيقة ونعاني منها الآن، إذ تُستخدم نماذج توليد النصوص مثل: ChatGPT الآن لكتابة تعليمات برمجية ضارة حقيقية.
ويساعد GitHub Copilot المبرمجين في كتابة التعليمات البرمجية باستخدام كمية هائلة من البرامج مفتوحة المصدر كمدخلات. ولا تحترم الأداة دائمًا حقوق التأليف والنشر وخصوصية المؤلفين الذين انتهى الأمر بوجود تعليماتهم البرمجية في مجموعة موسعة للغاية من بيانات التدريب.
ومع تطور الشبكات العصبية، ستتطور الهجمات التي تتعرض لها أيضًا هذه الشبكات، مع عواقب لم يفهمها أحد حتى الآن.